
Security Concept

Mar 09, 2021

INTRODUCTION

1 Introduction 3
1.1 About this Document . 3
1.2 Contributors . 3
1.3 Guarantees Provided by luca . 3
1.4 Overview . 4

2 Actors and Components 5
2.1 Actors . 5
2.2 Components . 5

3 Assets 7

4 Security Objectives 9
4.1 List of Objectives . 9

5 Secrets and Identifiers 11
5.1 System-wide List of Secrets . 11
5.2 Glossary . 12

6 Overview of Processes 13

7 Venue Registration 15
7.1 Overview . 15
7.2 Secrets . 15
7.3 Process . 16
7.4 Security Considerations . 16

8 Health Department Registration 17
8.1 Overview . 17
8.2 Secrets . 17
8.3 Process . 18

9 Daily Keypair Rotation 19
9.1 Overview . 19
9.2 Secrets . 19
9.3 Daily Public Key Rotation . 20

10 Guest Registration 21
10.1 Overview . 21
10.2 Secrets . 21
10.3 Process . 22

11 Check-In via Mobile Phone App 25
11.1 Overview . 25
11.2 Secrets . 25
11.3 Process . 26

i

12 Check-In via a Printed QR Code 31
12.1 Overview . 31
12.2 Secrets . 31
12.3 Process . 32
12.4 Security Considerations . 33

13 Guest Checkout 35
13.1 Overview . 35
13.2 Secrets . 35
13.3 Checkout Process . 35
13.4 Security Considerations . 36

14 Additional Check-In Data 37

15 Generation of Static Badges 39
15.1 Overview . 39
15.2 Secrets . 39
15.3 Process . 40
15.4 Security Considerations . 43

16 Badge Personalization 45
16.1 Overview . 45
16.2 Process . 45

17 Badge Check-In 47
17.1 Security Considerations . 48

18 Tracing the Check-In History of an Infected Guest 49
18.1 Overview . 49
18.2 Secrets . 50
18.3 Process . 50
18.4 Security Considerations . 51

19 Finding Potential Contact Persons 53
19.1 Overview . 53
19.2 Secrets . 53
19.3 Process . 54
19.4 Security Considerations . 54

20 Cryptographic Algorithms 57
20.1 Symmetric Encryption . 57
20.2 Asymmetric Cryptography . 57
20.3 Encryption Scheme . 58

21 Planned Improvements 61
21.1 Certification of Health Department Keypairs . 61

22 Contact luca 63
22.1 GitHub . 63
22.2 Security Related Issues . 63

Index 65

ii

Security Concept

luca Sicherheitskonzept

luca unterstützt Veranstaltungs- und Restaurantbetreiber:innen bei der verpflichtenden Aufnahme der personen-
bezogenen Daten ihrer Gäste im Rahmen der Bekämpfung der Covid-19-Pandemie. Dabei legt luca besonderen
Wert auf den Schutz dieser Daten: Die Daten können weder von Betreiber:innen, noch vom luca-System gelesen
werden, sondern nur von den Gesundheitsämtern, in dem Falle dass eine Kontaktnachverfolgung wegen einer
bestätigten Infektion eines Gastes notwendig wird.

Nutzer:innen von luca erzeugen beim Zutritt so genannte verschlüsselte Check-Ins mit ihrem Smartphone oder
einem Schlüsselanhänger. Grundidee ist, dass die personenbezogenen Daten dabei von der luca-App der Nutzer:in
mit einem Gesundheitsamt-Schlüssel verschlüsselt und im Rahmen des Check-Ins an der Betreiber:in geschickt
werden. Die Betreiber:in verschlüsselt diese verschlüsselten Daten erneut und sendet sie, zusammen mit der
Check-In-Zeit, an das luca-System. Hierdurch kann weder die Betreiber:in, noch das luca-System oder die
Gesundheitsämter die personenbezogenen Daten der Nutzer:innen lesen.

Wird bei einer Nutzerin eine Infektion mit SARS-CoV2 festgestellt, sendet die luca-App der Infizierten alle
Check-In-Zeiten zusammen mit der ID der Betreiber:innen an das luca-System. luca fordert von allen diesen Be-
treiber:innen eine Entschlüsselung der Daten der Gäste an, die sich in der betreffenden Zeit ebenfalls eingecheckt
haben, d.h. luca erhält die mit dem Schlüssel des Gesundheitsamtes verschlüsselten Daten der Nutzer:innen. Diese
Daten werden dann von luca an das zuständige Gesundheitsamt übermittelt, das hieraus die Daten entschlüsseln
und damit die Nutzer:innen kontaktieren kann.

luca Security Concept

Due to the Covid-19 pandemic, restaurants, event venues and other public locations are required by law to collect
the contact information of their guests. luca aims to simplify this process while putting an emphasis on personal
data protection. Once a user tests positive for SARS-CoV2, only the public health authorities can access the end-
user’s personal data to conduct epidemiological contact tracing. Neither the owners of event venues nor the luca
server can access the end-user’s data at any time.

Upon entering a luca-enabled venue, a user creates a so-called “encrypted Check-In” using either their smartphone
or a simple key fob. This Check-In is encrypted in a way that only the public health authorities can read it. The
encrypted Check-In is then transferred to the venue owner via a QR code, where the Check-In is encrypted once
again by the venue owner so that nobody can access the user’s personal information at this stage. Now, the venue
owner sends this double-encrypted Check-In to the luca server along with a time stamp.

In case a luca user tests positive for SARS-CoV2, the app sends the infected user’s epidemiologically relevant
check-ins along with the IDs of the affected venues to the luca server. luca then requests these venue owners to
decrypt and upload the Check-In records of every user who visited their venue at the same time as the infected
person. Note that all contact information is still encrypted by the public health authorities’ key and readable by
neither luca nor the venue owner. Once the public health authorities receive these Check-Ins, they can decrypt the
data and contact luca users who might have been exposed to SARS-CoV2.

INTRODUCTION 1

Security Concept

2 INTRODUCTION

CHAPTER

ONE

INTRODUCTION

1.1 About this Document

This document describes the security concepts of the luca system as well as the processes and cryptographic
functions in technical detail. It also explains the guarantees luca provides to its users and how these guarantees
are accomplished.

Both luca and this document are continuously improved and in active development. If you discover any issues
with the concepts in this document or any mismatch between the document and luca’s behaviour, please contact
us directly at security@luca-app.de for responsible disclosure.

We greatly appreciate your feedback.

1.2 Contributors

This document is owned by culture4life GmbH, which is also responsible for the development of luca. It is
continuously developed and reviewed in cooperation with security experts and partners such as neXenio GmbH
and Fraunhofer AISEC.

1.3 Guarantees Provided by luca

luca’s main goal is to protect guests’ personal data. The technical description of the guarantees luca aims to
provide to its users can be found in the chapter Security Objectives.

In contrast to the paper-based approach to collecting contact data at restaurants and other public venues, luca is
designed to prevent the venue’s staff, luca itself and other 3rd parties from accessing this data. Public health
authorities (i.e. “Gesundheitsämter”) are the only entity that can access the relevant personal data of guests to
conduct contact tracing of users who have been potentially exposed to SARS-CoV2. Similar to the traditional
paper-based contact data collection, the health authorities need the venue owner’s consent to access this informa-
tion.

luca aims to underpin all security and data protection objectives and guarantees with cryptographic protocols
wherever feasible. This document describes the current implementation status of the luca system and provides
security considerations where some aspects of these guarantees are not yet fully met.

Please also note the planned improvements.

3

https://luca-app.de
mailto:security@luca-app.de

Security Concept

1.4 Overview

The remainder of this document is divided into six sections. The first section, “System Overview”, explains the
important components, assets, security objectives and cryptographic secrets in the system. Section two describes
how different actors are onboarded and registered in the system. Sections three and four describe the parts of
the system most visible to our users: the various ways users can check-in at luca venues. Finally, the section
“Contact Tracing” describes how public health authorities can use luca to identify chains of infection with the
explicit consent of luca venues. The appendix contains technical details about the cryptography used in luca and
improvements scheduled for the near future.

4 Chapter 1. Introduction

CHAPTER

TWO

ACTORS AND COMPONENTS

2.1 Actors

Guest A person that is required to securely provide their Contact Data to the Luca system before entering a venue
and later (on infection) submit their location history (Check-In History) to the Health Department.

Technically the Guest can be in one of three roles: Uninfected Guest, Traced Guest or Infected Guest.
Depending on their role, the security guarantees provided for the Guest change. For example, no component
in the system other than the Guest App will ever learn an Uninfected Guest’s Contact Data. In contrast, the
Contact Data of Traced Guests is made available to the Health Department.

Uninfected Guest The default role of a Guest. Neither the Check-In History nor Contact Data has been shared
with the Health Department.

Traced Guest A Guest who is part of a Contact Tracing Process. This Guest’s Contact Data is revealed to the
Health Department.

Infected Guest A Guest who is suspected of being infected with Sars-CoV2 and has consented to sharing their
Check-In History with the Health Department.

Health Department A local Health Department responsible for identification of contact persons. This term is
used synonymously for an employee that represents this Health Department.

Venue Owner A private person or business owner/manager of a venue that has Guests and uses luca to trace
contact information.

Scanner Operator The person who operates the Scanner Frontend at a venue.

Luca Service Operator culture4life GmbH as the creator and operator of the Luca system as a whole, their
backend services, phone and web applications. The Luca Service Operator has unrestricted access to the
Luca Server database.

Trusted 3rd Party A person or institution that is not affiliated with luca, its developers or operators. A trusted
3rd party is required to perform vital initialization steps regarding luca’s system setup. Note that different
mentions of Trusted 3rd Party throughout the document can refer to different institutions.

2.2 Components

Guest App The Luca Guest App is the interface for Guests. Guests enter their Contact Data in the app and use
the app to check-in at several locations without re-entering their contact details.

Health Department Frontend Enables the Health Department to trace infection cases and contact potential con-
tact persons.

Venue Owner Frontend The frontend for the managers/organizers of venues/locations/restaurants. Here, a pro-
fessional or private user can create locations or events which will enable them to check-in Guests.

Luca Server Stores encrypted Check-Ins and Contact Data and centrally orchestrates the other technical compo-
nents. The Luca Server is never in possession of personal Contact Data in plain text.

5

Security Concept

Scanner Frontend A web app that is used by the organizer or their employees to scan the QR codes produced by
the Guest App to check-in Guests.

Web-Check-In Frontend The Web-Check-In frontend enables venues to let Guests enter their information di-
rectly on-site on tablet device or something similar. This is useful if Guests are not users of the Guest
App.

Badge Personalization Frontend A web application to encrypt and store Contact Data for Guest’s that are wish-
ing to use a Badge to check-in at Luca locations.

Badge Generator Generates printable QR codes to be used by people without smartphones to allow check-ins at
luca venues.

Badge A printable QR code in the form of small badge to allow people without a smartphone to check-in at luca
locations.

Email Service Provider Used to Venue Owners and Health Departments.

SMS Service Provider Used to validate a Guest’s phone number upon entering Contact Data in the Guest App.

Component Diagram

<IPython.core.display.SVG object>

6 Chapter 2. Actors and Components

CHAPTER

THREE

ASSETS

Check-In The central artifact that enables the Health Department to contact Traced Guests. It is created with
each check-in process and encodes the information that a Guest is located at a specific location at a specific
time. However, the information which Guest the Check-In belongs to (specifically, their Contact Data) is
only made available to the Health Department during Tracing the Check-In History of an Infected Guest and
is never available to any other actor in the system.

Each Check-In contains the following information:

• the venue where the Check-In was created

• the check-in time

• the check-out time

• a trace ID that can be connected to an Infected Guest during contact tracing

• the encrypted contact data reference that can be used by the Health Department to contact Traced
Guests

Check-In History A collection of multiple Check-Ins that all belong to the same Guest. This asset is only made
availabe to the Health Department when an Infected Guest decides to share it with the Health Department
to aid in Tracing the Check-In History of an Infected Guest. It allows the Health Department to reconstruct
all venues the Guest has visited during the epidemiologically relevant timespan.

Contact Data The personal contact data that is entered by the Guest into the Guest App upon registration. It
contains the following information1:

• first and last name

• full address (street, street number, city, postal code)

• phone number

• email address

Health Department Information The meta data collected by the Luca Server about a Health Department during
Health Department Registration. The following information is stored:

• name of the Health Department

• for each configured employee:

– first and last name

– email address

– phone number (if provided)

Venue Information The meta data about a venue. The following information is stored:

• name of the venue

• name, email address and phone number contact person for this venue

1 luca is required to collect this information in order to comply with the German Infektionsschutzgesetz law and all federal states’ imple-
mentations of the law.

7

https://www.gesetze-im-internet.de/ifsg/index.html

Security Concept

• full address of the venue

• geo-coordinates of the venue

• configured Check-In radius

• configured number of tables

Scanner Information The meta data of a QR code scanner tied to a venue. Venue Owners can create any number
of unique scanners for their venue. The Luca Server maintains the following information for each scanner:

• scanner ID

• venue ID

• a plaintext name of the scanner

• the public key of the venue keypair

8 Chapter 3. Assets

CHAPTER

FOUR

SECURITY OBJECTIVES

luca provides the following guarantees to the respective actors in the system:

4.1 List of Objectives

O1. An Uninfected Guest’s Contact Data is known only to their Guest App

The Guest’s personal data is undisclosed as long as they didn’t test positive (and become an Infected Guest) or
show up in a tracing process by a Health Department (and become a Traced Guest).

O2. An Uninfected Guest’s Check-Ins cannot be associated to the Guest

Individual Check-Ins of an Uninfected Guest are not disclosed. Only when a Check-In shows up in a tracing
process (making the Guest a Traced Guest), is this particular Check-In disclosed to the Health Department.

Naturally, the Guest App itself may have knowledge about the Check-Ins.

O3. An Uninfected or Traced Guest’s Check-Ins cannot be associated to each
other

The entire Check-In History of a Guest is disclosed to the Health Department if, and only if, the Guest tested
positive and explicitly consents to the tracing (making them an Infected Guest). Thus, not even an anonymous
Check-In History can be generated.

Note that the Guest App may keep a local history of Check-Ins.

O4. An Infected Guest’s Check-In History is disclosed to the Health Department
only after their consent

Even if a Guest tested positive and is in contact with the Health Department, they can decide not to share their
Check-In History.

9

Security Concept

O5. The Health Department learns only the relevant part of the Infected Guest’s
Check-In History

The Health Department only learns the epidemiologically relevant part of a Guest’s Check-In History.

O6. Traced Guest’s Contact Data is disclosed to the Health Department only
after Venue Owners’ consent

This requirement is meant to mitigate illicit disclosure of arbitrary Guests’ contact information by the authorities.

10 Chapter 4. Security Objectives

CHAPTER

FIVE

SECRETS AND IDENTIFIERS

5.1 System-wide List of Secrets

daily keypair The keypair whose public key is used by the Guest App to encrypt the secret part of the Check-In
data. Its private key is used by a Health Department during the process of Contact Tracing.

The keypair’s public key is signed using the HDSKP and stored on the Luca Server. Its private key is
encrypted for each registered Health Department’s HDEKP. The encrypted private keys are stored on the
Luca Server.

The daily keypair’s life cycle and usage is detailed in the chapter Daily Keypair Rotation.

badge keypair The keypair that encrypts contact data references for static Badges. The public key is used exclu-
sively by a Trusted 3rd Party during the generation of static Badges. Its private key is owned by the Health
Department and is used to decrypt Check-Ins created using a static Badge.

badge attestation keypair This keypair signs static Badges during their generation. Its private key is kept in the
Luca Server and is used via an authenticated API endpoint by the Badge Generator. The Scanner Frontend
uses the public key to verify that a presented Badge is valid and registered with the Luca Server.

data secret A secret cryptographic seed which is used to derive both the data encryption key and the data au-
thentication key. This seed is encrypted twice before being sent to the Luca Server during Check-In and
ultimately protects the Guest’s Contact Data. It is stored locally in the Guest App.

data encryption key A symmetric key derived from the data secret, used to encrypt the Contact Data.

data authentication key A symmetric key derived from the data secret during Guest Registration. It is used to
authenticate the Guest’s Contact Data and Check-Ins. The data authentication key is stored encrypted on
the Luca Server as a part of the encrypted guest data.

guest keypair An asymmetric keypair created during the Guest Registration.

The keypair’s private key is used to sign the encrypted guest data and guest data transfer object. The public
key is uploaded to the Luca Server.

HDEKP The “Health Department Encryption Keypair” is used to encrypt the daily keypair’s private key. Each
Health Department has their own HDEKP.

The public of this keypair is signed using the HDSKP and stored on the Luca Server. The private key is
stored locally at the Health Department.

HDSKP The “Health Department Signing Keypair” is used to authenticate the HDEKP. Each Health Department
has their own HDSKP.

Health Department Certificate A certificate that identifies a Health Department. It is used to authenticate to the
Health Department Frontend.

This certificate is created in a manual process by the Luca Service Operator and signed by an external,
trusted Certificate Authority.

tracing secret A randomly generated seed used to derive trace IDs when checking in using the Guest App. It
is stored locally on the Guest App until it is shared with the Health Department during contact tracing.

11

Security Concept

Moreover, the tracing secret is rotated on a regular basis in order to limit the number of trace IDs that can
be reconstruced when the secret is shared.

tracing TAN The tracing TAN (Transaction Authentication Number) is a human readable code that is used during
the process of Contact Tracing. By requesting a TAN from the Luca Server and communicating it to the
Health Department an Infected Guest grants the Health Department access to their Contact Data.

Note: This TAN is not to be confused with the verification TAN, which is involved in the Guest Registration
process to verify the Guest’s phone number.

venue keypair An asymmetric keypair generated locally in the Venue Owner Frontend upon Venue Registration.
The keypair’s public key is used by the Scanner Frontend to add the outer layer of encryption to the contact
data reference (which is already encrypted for the daily keypair) during Guest Check-In. Its private key is
stored locally.

verification TAN The verification TAN (Transaction Authentication Number) is a human readable code that is
used to verify the Guest’s phone number during Guest Registration.

badge serial number The 12-digit serial number that is printed on the flip-side of each Badge. A 56-bit random
number that acts as a seed to derive all secrets associated with the Badge and encoded into the Badge’s QR
code.

5.2 Glossary

user ID A unique identifier for the Guest in the Luca system. It indexes the encrypted guest data and is also used
to derive trace IDs during Guest Check-In.

trace ID An opaque identifier derived from a Guest’s user ID and tracing secret during Guest Check-In. It is
used to identify Check-Ins by an Infected Guest after that Guest shared their tracing secret with the Health
Department.

venue ID An unique identifier for a venue registered in the Luca system. The venue ID is linked to the Venue
Information stored by the Luca Server.

scanner ID An unique identifier for an instance of a Scanner Information associated with a specific venue. Given
the scanner ID the Scanner Frontend can start performing Check-Ins for the associated venue.

daily keypair ID An identifier for the daily keypair.

verification tag A tag used to verify the authenticity of the contact data reference.

encrypted guest data This object contains the Contact Data and data authentication key. It is encrypted with the
data encryption key, signed with the guest keypair and uploaded to the Luca Server during Guest Registra-
tion.

guest data transfer object This object contains an Infected Guest’s tracing secrets, user ID and data secret.
During Tracing the Check-In History of an Infected Guest the Guest App encrypts the guest data transfer
object for the daily keypair and shares it (via the Luca Server) with the Health Department.

contact data reference The contact data reference combines the user ID, the data secret and a verification tag.
Encrypted with both the daily keypair and the venue keypair it is included in each Check-In during Guest
Check-In.

12 Chapter 5. Secrets and Identifiers

CHAPTER

SIX

OVERVIEW OF PROCESSES

luca’s primary goal is to automate the identification of contact persons for venues, restaurants and locations and
ease the Health Department’s identification of possible contact persons of infected persons.

The table below provides a high-level overview of the involved processes to achieve this goal. The chapters in this
part explain each process in detail.

Process Name Purpose
Guest Registration Set up a smartphone to use the Guest App in order to check-in at venues

using luca.
Venue Registration Register an event or a venue with the Luca system and enable it to check-

in Guests via luca.
Health Department Registration Onboard a Health Department to the Luca system.
Daily Public Key Rotation Regular rotation of the daily keypair.
Check-In via Mobile Phone App Transmit encrypted contact information to the Health Department so it

can be used for Tracing the Check-In History of an Infected Guest.
Tracing the Check-In History of an
Infected Guest

Retrieve a Traced Guest’s Contact Data in case of an infection.

Generation of Static Badges,
Badge Personalization, Badge
Check-In

Set up a Static QR code Badge, personalize it with the Contact Data of
its owner and use it to check-in at venues without using a smartphone.

13

Security Concept

14 Chapter 6. Overview of Processes

CHAPTER

SEVEN

VENUE REGISTRATION

Professional Venue Owners can register their venue with the luca system via a web application. The venue can
then be managed via a web interface in order to set up individual Scanner Frontends and to configure other venue-
specific parameters (for example auto checkout behavior).

7.1 Overview

Participants

• Luca Server

• Venue Owner

• Venue Owner Frontend

Assets

• Venue Information

Preconditions

• the venue is not registered

Postconditions

• the venue keypair is available locally to the Venue Owner Frontend

• the Venue Information is stored on the Luca Server

7.2 Secrets

The following secrets are involved in this process:

Secret Use / Purpose Location
venue keypair Encrypt the contact data reference of

Guests during check-in and decrypt it dur-
ing Tracing the Check-In History of an In-
fected Guest.

Both the public and private key are stored
locally by the Venue Owner Frontend. The
public key is shared with Scanner Fron-
tends when they are set up.

15

Security Concept

7.3 Process

To initiate the process the Venue Owner registers with their email address and a password. They enter further
information, such as the name of the venue and their contact information in the Venue Owner Frontend (see Venue
Information for the complete list of the data collected).

Subsequently, the Venue Owner Frontend generates the venue keypair. Both the public and private key are stored
locally. The keypair’s public key is used to set up new Scanner Frontends, which utilize it to encrypt Guests’
contact data reference during Check-In via Mobile Phone App. The keypair’s private key is needed by the Venue
Owner Frontend in order to lift this encryption when assisting a Health Department in the process of Tracing the
Check-In History of an Infected Guest.

7.4 Security Considerations

Authenticity of the Venue Keypair’s Public Key

As the Venue Owner holds no certificate with which they could sign the public key of the venue keypair there is
no secure way to validate its authenticity when it is used in the check-in process. This affects both the Check-In
via Mobile Phone App and the Check-In via a Printed QR Code.

It is therefore important that the public key is transmitted to the Scanner Frontend on a secure out-of-band channel
(specifically, not the Luca Server).

Prospectively, this will be implemented by attaching the venue keypair’s public key to the fragment component of
the link to the Scanner Frontend, which is created in the Venue Owner Frontend. For printed QR codes for self
Check-In the public key will be part of the QR code.

Note that the impact of this only affects the outer layer of the contact data reference’s encryption. It is still
encrypted with the daily keypair and thus only accessible for the Health Department.

Sensitivity of the Venue Keypair

The venue keypair’s private key must not be lost or made accessible to third parties. Hence, organizational mea-
sures are taken to specifically inform the Venue Owner that special care must be taken when dealing with this
key.

16 Chapter 7. Venue Registration

CHAPTER

EIGHT

HEALTH DEPARTMENT REGISTRATION

luca helps Health Departments to trace contact persons and identify infection clusters. In order to participate in
the system Health Departments need to be registered and onboarded first.

8.1 Overview

Participants

• Luca Server

• Health Department

• Health Department Frontend

Assets

• Health Department Information

Preconditions

• the Health Department is not onboarded

Postconditions

• the Health Department has received a login certificate from the Luca Service Operator (out-of-band)

• an admin user for the Health Department has been registered

• the Health Department Information is stored on the Luca Server

• the Health Department’s HDEKP and HDSKP’s public keys are stored on the Luca Server; the private keys
are stored locally at the Health Department

• relevant daily keypairs have been re-encrypted by an existing Health Department

8.2 Secrets

The following secrets are involved in this process:

17

Security Concept

Secret Use / Purpose Location
HDEKP Encrypt/decrypt the daily keypair. The private key is stored locally on the

device that runs the Health Department
Frontend. The public key is stored on the
Luca Server.

HDSKP Sign the daily keypair during Daily Public
Key Rotation.

The private key is stored locally on the
device that runs the Health Department
Frontend. The public key is stored on the
Luca Server.

Health Department
Certificate

Authenticate to the Health Department
Frontend.

Stored locally on devices that run the
Health Department Frontend.

8.3 Process

In order to be onboarded to luca the Health Department contacts the Luca Service Operator. From them the
Health Department receives the Health Department Certificate. The Luca Service Operator also helps to provide
the Health Department Information to the Luca Server and to set up an admin user account for one of the Health
Department’s employees. The admin user can now access the Health Department Frontend using the certificate
and the credentials for their user account.

When the admin user logs in for the first time the Health Department Frontend automatically generates two
keypairs: the HDEKP and the HDSKP. These keypairs are required for the Daily Key Rotation Process. Please
refer to that chapter for more details about the keypairs’ usage. Both keypairs’ public keys are uploaded to the
Luca Server. Their private keys are stored locally.

Re-Encryption of the Daily Keypair

In the final step of the onboarding process all recent (epidemiologically relevant) daily keypairs need to be re-
encrypted for the new Health Department. This is necessary in order for the new Health Department to be able to
decrypt existing daily keypairs with its HDEKP. The re-encryption process is triggered automatically and carried
out by any other Health Department that is currently logged in to the Health Department Frontend as follows:

• fetch all Health Departments’ HDEKP public keys (including the new Health Department’s recently created
key)

• download all relevant daily keypairs

• decrypt them using its own HDEKP’s private key

• encrypt them for all other Health Departments’ HDEKPs

• upload them back to the Luca Server

This process is very similar to the rotation of the daily keypair. Please refer to that chapter for further details.

Adding Further (Non-Admin) Employees

The admin user can create further user accounts that do not have administrative access in the Health Depart-
ment Frontend. Like the admin user, those users can authenticate to the Health Department Frontend using their
individual credentials and the Health Department Certificate and use it for contact tracing.

18 Chapter 8. Health Department Registration

CHAPTER

NINE

DAILY KEYPAIR ROTATION

9.1 Overview

Participants

• Health Department

• Health Department Frontend

• Luca Server

Assets

• None

Preconditions

• the Health Department is registered with the Luca system

• the current daily keypair is older than its rotation threshold

Postconditions

• a fresh daily keypair is generated and published to the Luca Server

– Guest Apps use the new public key for Check-Ins

– all Health Departments have access to the new private key for contact tracing

9.2 Secrets

The following secrets are involved in this process:

Secret Use / Purpose Location
daily keypair Guest Apps use the daily keypair’s public key to en-

crypt their contact data reference for every Check-In.
The daily keypair is rotated frequently to minimize
potential misuse.

Private key is accessi-
ble to all Health Depart-
ments

HDSKP New daily keypair public keys are signed by the
Health Department’s private key so that Guest Apps
can validate the public key’s authenticity.

Every Health Depart-
ment maintains their own
HDSKP locally. Public
keys are distributed via
the Luca Server1.

HDEKP New daily keypair private keys are encrypted for each
Health Department via their associated HDEKP.

Every Health Depart-
ment maintains their own
HDEKP locally. Public
keys are distributed via
the Luca Server?.

19

Security Concept

9.3 Daily Public Key Rotation

For every Check-In the Guest App encrypts a contact data reference with the daily keypair. To mitigate the impact
of any single compromised key luca rotates the daily keypair frequently.

The rotation will be performed by any Health Department that logs in after the last daily keypair expired. The pri-
vate key is encrypted and shared by all participating Health Departments using their associated HDEKPs (Health
Department Encryption Key Pair) via the Luca Server. The public key (and its creation date) are signed with the
HDSKP (Health Department Signing Key Pair) and distributed to all Guest Apps via the Luca Server. This effec-
tively replaces the old daily keypair. All described cryptographic actions are performed in the Health Department
Frontend, the Luca Server never learns the daily keypair private key in plaintext form.

Measures are taken to solve race conditions if multiple Health Departments try to perform the key rotation si-
multaneously. Eventually, all Health Departments share the knowledge of the new daily keypair and are ready to
decipher Contact Data of Check-Ins performed on that day.

Rotation Process

<IPython.core.display.SVG object>

Key Destruction

Private keys of daily keypairs that are older than the epidemiologically relevant time span (specifically, four
weeks) can be destroyed. The Luca Server removes all such encrypted private keys for all Health Departments.
Furthermore, the Health Department Frontend removes all locally stored copies of such private keys.

Security Considerations

Authenticity of HDSKP and HDEKP

Each Health Department owns a pair of keypairs, namely HDSKP and HDEKP. Those keypairs are used to au-
thenticate and distribute newly generated daily keypairs. Both HDSKP and HDEKP are generated in the Health
Department Frontend during the registration process and remain known exclusively to the respective Health De-
partment. In a future version of _luca_, we plan to certify the public keys of HDSKP and HDEKP by an indepen-
dent trusted certificate authority to further strengthen their authenticity guarantees.

1 Currently, the Health Departments provide verbatim public keys as HDSKP/HDEKP, only. A future version of luca will also provide
means to verify the authenticity of those public keys against a trusted third party.

20 Chapter 9. Daily Keypair Rotation

CHAPTER

TEN

GUEST REGISTRATION

In this process a new Guest registers to the Luca system. This process is required for Guests using the Guest App.
During this process, local secrets are created, the Guest enters their Contact Data and identifiers and encrypted
data are sent to the Luca Server.

10.1 Overview

Participants

• Guest

• Guest App

• Luca Server

Assets

• Contact Data

Preconditions

• the Guest is not registered

• the Guest App is installed

Postconditions

• the Guest has a user ID and a guest keypair

• the Guest App has stored the private key material and secrets

• the Luca Server has stored the encrypted Contact Data

10.2 Secrets

The following secrets are involved in this process:

21

Security Concept

Secret Use / Purpose Location
data secret A secret “seed”1 which is used to derive both the data

encryption key and the data authentication key. This
seed is the secret that is encrypted twice before be-
ing sent to the Luca Server during Check-In and ulti-
mately protects the Guest’s Contact Data.

Securely2 stored locally
on the mobile device

data encryption key A symmetric key derived from the data secret, used
to encrypt the Contact Data.

Not stored

data authentication key A symmetric key derived from the data secret, used
to authenticate the Contact Data. It is also used to
authenticate Check-Ins.

Not stored

tracing secret Used by the Guest App to generate trace IDs during
Check-In and (after the Guest granted access to it) by
the Health Department for contact tracing.

Securely stored locally
on the mobile device

guest keypair A pair of public and private key that is used to authen-
ticate both new and updated encrypted guest data.

The public key is stored
on the Luca Server. The
private part is securely
stored locally on the mo-
bile device.

10.3 Process

The diagram below provides an overview to the complete process.

<IPython.core.display.SVG object>

Creating the Secrets

On initial startup the Guest App generates the following secrets:

• data secret as 16 bytes of random data

• tracing secret as 16 bytes of random data

• guest keypair as an EC secp256r1 keypair

It stores this data?. The Guest App then derives two keys from data secret as follows:

• data encryption key as SHA256(data secret || 0x01), truncated to 16 bytes

• data authentication key as SHA256(data secret || 0x02)

The derived keys are used in the remainder of the registration process but are not persisted on the device.

1 The reason for deriving the two secrets from a seed rather than creating both of them at random is the limited “storage capacity” of the
QR code during Check-In.

2 All secrets stored on the device are protected using the respective OS’ native credential storage mechanism. Specifically, the Android
keystore system on Android and the iOS Keychain Services on iOS.

22 Chapter 10. Guest Registration

https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.apple.com/documentation/security/keychain_services

Security Concept

Verifying the Contact Data

Upon first launch of the Guest App the Guest provides their Contact Data to the App.

The App then verifies the Guest’s phone number. For that, the phone number the Guest entered is sent to the Luca
Server, which then creates a challenge. Using an external SMS Service Provider a verification TAN is sent to that
phone number either as an SMS or as a voice call. After entering the TAN in the App it is verified by the Luca
Server. The Luca Server keeps no record of the Guest’s phone number after that3.

Encrypting the Contact Data

If the TAN verification is successful, the Guest App creates and signs encrypted guest data as follows:

pseudocode

iv = random_bytes(16)

encrypted_guest_data = AES_128(contact_data + data_authentication_key,
key=data_encryption_key,
mode=CTR,
iv=iv)

guest_data_mac = HMAC(encrypted_guest_data,
key=data_authentication_key)

guest_data_signature = guest_keypair.private.sign(encrypted_guest_data +
data_authentication_key +
iv)

The artifacts created here are uploaded to the Luca Server in the next step.

Registering to the Luca Server

The Guest App sends the following data to the Luca Server:

• the encrypted guest data

• the IV used in the encryption

• the guest data mac

• the guest data signature

• the public key of the guest keypair

The Luca Server returns the Guest’s user ID. In the end of the process the two participants have stored the follow-
ing data:

Guest App

• user ID

• data secret

• tracing secret

• guest keypair (public and private key)

Luca Server

• user ID

• the guest keypair’s public key

3 According to the German “Telekommunikationsgesetz” the SMS Service Provider is legally required to store the messages for 90 days.

10.3. Process 23

Security Concept

• the encrypted guest data

Updating the Contact Data

Guests should be able to update their Contact Data. This is needed, for example, in case their address or phone
number changes. Whenever a Guest changes their Contact Data in the Guest App, the App creates a new encrypted
guest data package by repeating the steps described in the Section Encrypting the Contact Data. Using the user
ID retrieved during the initial registration, the App uploads the following data to the Luca Server:

• the encrypted guest data

• the IV used in the encryption

• the guest data mac

• the guest data signature

The Luca Server verifies that the Guest is authorized to update the data by checking the signature with the already
present guest keypair’s public key.

Rotating the Tracing Secret

The tracing secret is used by the Guest App to generate the trace IDs for Check-Ins. Whoever knows a tracing
secret (and the respective user ID) can calculate all trace IDs the App has derived from this secret and thus
reconstruct a part of the Guest’s Check-In History.

This is desired, of course, when an Infected Guest consents to revealing their tracing secret to the Health Depart-
ment during Contact Tracing. However, the Health Department should only learn the epidemiologically relevant
part of the Guest’s Check-In History (cf. Security Objective O5).

To guarantee this, the Guest App rotates the tracing secret once a day. If the Guest is infected, the App transfers all
recent, epidemiologically relevant, tracing secrets to the Health Department. As a result, the Health Department
can only reconstruct that part of the Check-In History which has been created based on the shared tracing secrets.

24 Chapter 10. Guest Registration

CHAPTER

ELEVEN

CHECK-IN VIA MOBILE PHONE APP

11.1 Overview

Participants

• Guest

• Guest App

• Scanner Operator

• Scanner Frontend

• Luca Server

Assets

• Check-In

• Venue Information

Preconditions

• the Guest App is installed

• the Guest is registered

• the Venue Owner is registered

• the Scanner Frontend is ready to scan

Postconditions

• the Guest has created a Check-In at the Venue Owner’s venue

• the Guest has checked-out of the venue at a later point in time

• the Luca Server has an encrypted record of the above Check-In Event

• the Guest App has noted the visited location in its local Check-In History

11.2 Secrets

The following secrets are involved in this process:

25

Security Concept

Secret Use / Purpose Location
data secret The Guest’s secret seed to derive both the data en-

cryption key and the data authentication key. This
seed will be encrypted for the Health Department in
this process before being transported to the Scanner
Frontend via a QR code and protects the Guest’s Con-
tact Data stored on the Luca Server.

Securely stored locally
on the mobile device
(see Guest Registration
for further details)

data authentication key A symmetric key derived from the data secret, used
to bind the Check-In data to the current time stamp of
the Check-In event.

Not stored

tracing secret Used to generate an anonymous trace ID to facilitate
contact tracing by the Health Department (after the
Guest granted access to the tracing secret – rendering
them an Infected Guest).

Securely stored locally
on the mobile device

daily keypair Used to encrypt the above-mentioned data secret on
the Guest’s mobile device before transferring it to the
Scanner Frontend via a QR code.

The public key is ob-
tained from the Luca
Server1. The private key
is known to all Health
Departments (see Daily
Public Key Rotation for
further details).

11.3 Process

This describes how Guests use luca’s Guest App to generate so-called Check-Ins at specific venues. For that,
Venue Owners deploy Scanner Frontends that read QR codes generated by the Guest App. Note that there are
other ways a Guest might check-in to a venue: Please refer to Badge Check-In and Check-In via a Printed QR
Code for further details.

Check-Ins can be used at a later time by Health Departments to reconstruct an Infected Guest’s Check-In History
(given that the Infected Guest has given their consent). Check-Ins of other Guests can be associated with the
Infected Guest’s Check-In History to allow for Tracing the Check-In History of an Infected Guest.

In any case the Check-In data that is transferred and stored on the Luca Server does not reveal information about
the Guest’s identity (O1, O2). Neither does the Luca system learn about a Guest’s habits (O3).

<IPython.core.display.SVG object>

Preparation

Before generating any QR codes to perform Check-Ins the Guest App will fetch the latest daily keypair public key
from the Luca Server (see Daily Public Key Rotation). The provided public key comes with a reference to the
issuing Health Department, a creation timestamp and a signature by a Health Department’s HDSKP certificate.
The Guest App must validate this signature before encrypting anything with the fetched public key. Validation of
the signature is subject to the planned improvement Certification of Health Department Keypairs. Furthermore,
keys that are older than seven days are not considered valid anymore.

1 The provided public key of the daily keypair is signed by a Health Department using their HDSKP. This signature is provided by the
Luca Server along with said public key.

26 Chapter 11. Check-In via Mobile Phone App

Security Concept

Scanner Check-In

QR codes generated by the Guest App are valid for a short period of time and the whole generation process
described below is repeated every minute. Each trace ID is generated as HMAC-SHA256 of the Guest’s user ID
and a current quantized timestamp (clamped to the latest full minute) as data and the tracing secret as key. The
resulting value is truncated to the first 16 bytes. Subsequently, the Guest App asymmetrically encrypts the Guest’s
user ID and the data secret for the daily keypair. The IV is defined as the first 16 bytes of the ephemeral public
key used in the DLIES. The Guest App then calculates a verification tag as HMAC-SHA256 of the timestamp
and the encrypted data as data and the data authentication key as key, truncated to the first 8 bytes. A four-byte
checksum (truncated SHA256) of all the previously generated data blob is appended as an integrity check to detect
faulty QR code reads2.

QR Code Generation and Check-In

The app generates a new QR code every minute, for each code the app generates the following:

timestamp = UNIX timestamp rounded down to the last full minute (little
→˓endian encoding)
trace_id = HMAC-SHA256(user_id || timestamp, tracing_secret) # truncated
→˓to 16 bytes
ephemeral_keys = a new secp256r1 key pair (for DLIES with the daily public key)
dh_key = ECDH(ephemeral_keys.private, daily_keypair.public)
enc_key = SHA256(dh_key || 0x01) # truncated to 16 bytes
iv = ephemeral_keys.public # truncated to 16 bytes
enc_data = AES-128-CTR(userId || data_secret, enc_key, iv)
verification_tag = HMAC-SHA256(timestamp || enc_data, data_authentication_key)

Security Considerations

trace_id

The trace ID (trace_id) depends on the user ID (user_id) of the Guest, the current quantized timestamp
and the Guest’s tracing secret. Hence, all trace IDs for any given minute can be calculated given the user ID and
the tracing secret (which is stored securely inside the Guest App). Without the tracing secret, the Guest’s trace
IDs can neither be linked to (a) the Guest themselves (fulfilling O2) nor (b) to other trace IDs of the same Guest
(fulfilling O3).

If tested positive for Sars-CoV2 a Guest may consent to sharing their tracing secret with the Health Department
(rendering them an Infected Guest). This facilitates the Health Department to trace the Infected Guest’s Check-In
History (fulfilling O4). See Tracing the Check-In History of an Infected Guest for further details.

To restrict the disclosed time interval of the Infected Guest’s Check-In History the Guest App regularly changes
the tracing secret (see Rotating the Tracing Secret). The Guest App shares only the tracing secrets that were valid
in an epidemiologically relevant time frame (about two weeks) with the Health Department (fulfilling O5).

2 The QR code standard already includes an error correction mechanism. However, some dedicated QR code scanner hardware acts as
keyboard input device to forward QR code data to the luca web application. As this data transfer appears to be error prone, we added
checksumming on application level as well.

11.3. Process 27

Security Concept

verification_tag

The encrypted data enc_data is not authenticated as it would usually be the case (cf. Encrypt-then-MAC). We
assume that neither the Luca Server nor the Venue Owner can benefit from altering enc_data in any meaningful
way. Instead, the verification_tag binds the Check-In’s timestamp to the data secret to avoid replay attacks
by an adversary that learned about enc_data but not the data secret. Otherwise, said adversary might use
enc_data to create Check-Ins with the identity of the Guest that owns the data secret. Binding the timestamp
to the data secret mitigates this replay to a short window of opportunity (about one minute) assuming that the
Scanner Frontend validates that timestamps in Check-Ins are recent.

Authenticity of the HDSKP

The HDSKP is generated in the Health Department Frontend during the registration process and remains known
exclusively to the respective Health Department. Currently, the Health Departments provide only verbatim public
keys as HDSKP. A future version of Luca will also provide means to verify the authenticity of the HDSKP against
a trusted third party.

QR Code Construction

device_type value
iOS 0x00
Android 0x01
Static 0x02
Web App 0x03
Form 0x04

The App then displays a QR code containing:

• version (QR code protocol version)

• device_type

• key_id (ID of the daily keypair used for this Check-In)

• timestamp

• trace_id

• enc_data

• ephemeral_keys.public

• verification_tag

• checksum

The payload is concatenated and encoded with ASCII85 to be displayed as a QR code.

28 Chapter 11. Check-In via Mobile Phone App

Security Concept

QR Code Scanning, Validation and Check-In Upload

The Scanner Frontend reads the above QR code using either a mobile phone camera or a dedicated scanner
hardware. Before doing any further processing, it validates the checksum to detect reader errors. Furthermore,
the contained timestamp is compared to the Scanner’s local clock with a reasonable grace period. If either
the checksum or the timestamp checks fail, no further processing is performed. Any further cryptographic
validity checks cannot be performed by the Scanner Frontend.

Next, the relevant Check-In data fields are encrypted by the Scanner Frontend using the venue keypair’s public
key (whose private key is in possession of the Venue Owner) as follows:

eph_scanner_keys = a new secp256r1 key pair (for DLIES with the venue public key)
dh_key = ECDH(eph_scanner_keys.private, venue_keypair.public)
enc_key = SHA256(dh_key || 0x01) # truncated to 16 bytes
auth_key = SHA256(dh_key || 0x02)
iv = random_bytes(16)

version = 0x03 # protocol version of the encrypted data record
check_in_data = version || key_id || ephemeral_keys.public || verification_tag ||
→˓enc_data

venue_enc_data = AES-128-CTR(check_in_data, enc_key, iv)
venue_enc_data_mac = HMAC-SHA256(venue_enc_data, auth_key)

At last, the following data is uploaded to the Luca Server for each successful Check-In.

• trace_id

• scanner_id

• device_type

• timestamp

• venue_enc_data

• venue_enc_data_mac

• iv

• eph_scanner_keys.public

Note: luca stores both the time sent and the time the request was received

When storing this information the Luca Server associates it with the venue_id (determined via the
scanner_id) and the Check-In time. No further processing is done in the Luca Server.

Security Considerations

Second Layer of Encryption

As required by O6: Venue Consent, the Health Department shall be prevented from single-handedly decrypting
Guest’s Contact Data. The Luca system is designed to “replace” the paper-based guest lists in physical venues
that provide the same security guarantee. Hence, Scanner Frontends encrypt the already encrypted Contact Data
in Check-Ins and remove this encryption layer only on authoritative request of a Health Department. See Tracing
the Check-In History of an Infected Guest for further details.

11.3. Process 29

Security Concept

Authenticity of venue keypair

When encrypting the (encrypted) user data (enc_data) and the additional data with the venue keypair’s public
key the authenticity of that public key is crucial. Plese refer to the security considerations regarding Venue
Registration for further details.

scanner_id

The scanner_id sent as part of the Check-In data is the only indicator luca can use in order to infer the
associated venue. Forging a non-existent scanner_id could potentially allow an attacker to send bogus data to
the Luca Server. However, this does not reveal any information to the attacker in any scenario.

On a similar note, knowing the scanner_id of a venue basically allows the impersonation of the venue’s
Scanner Frontend. This is accepted; more specifically, this is specifically desired in the Self Check-In scenario.

QR Code Scanning Feedback

The described process relies on the uni-directional communication from the Guest App to the Scanner Frontend
to perform a Check-In by scanning a dynamic QR code. Theoretically, this allows Guest Check-Ins even without
a constant internet connection of the Guest App. Nevertheless, user feedback by the Guest App for a successfully
scanned QR code is seen as desirable.

Therefore, the Guest App polls the Luca Server via an unauthenticated connection. This inquires whether a Check-
In was uploaded by a Scanner Frontend with a trace ID that the Guest App recently generated. Once this inquiry
polling request is acknowledged by the Luca Server, the Guest App assumes that a successful QR code scan and
Check-In was performed. Some UI feedback is provided to the Guest.

Security Considerations

This polling request might leak information about the association of a just checked-in trace ID and the identity of
the Guest (directly contradicting O2). As mobile phone network typically use NAT, the fact that the Luca Server
does not log any IP addresses and the connection being unauthenticated, we do accept this risk.

30 Chapter 11. Check-In via Mobile Phone App

CHAPTER

TWELVE

CHECK-IN VIA A PRINTED QR CODE

This variation allows the Guest App to create Check-Ins by scanning a printed QR code. For instance, a restaurant
might place such a QR code on each available table. In contrast to the conventional check-in the Scanner Frontend
is not involved. Instead, the Guest App assumes the role of the scanner and generates a Check-In single-handedly.

12.1 Overview

Participants

• Guest

• Guest App

• Luca Server

Assets

• Check-In

Preconditions

• the Guest App is installed

• the Guest is registered

• the Venue Owner is registered

Postconditions

• the Guest has created a Check-In at the Venue Owner’s venue

• the Luca Server has an encrypted record of the above Check-In event

• the Guest App has noted the visited location in its local Check-In History

12.2 Secrets

The following secrets are involved in this process:

31

Security Concept

Secret Use / Purpose Location
data secret The Guest’s secret seed to derive both the data en-

cryption key and the data authentication key. This
seed will be encrypted for the Health Department in
this process and protects the Guest’s Contact Data
stored on the Luca Server (cf. contact data reference).

Securely stored locally
on the mobile device
(see Guest Registration
for further details).

tracing secret Used to generate an anonymous trace ID to facilitate
contact tracing by the Health Department (after the
Guest granted access to the tracing secret – rendering
them an Infected Guest).

Securely stored locally
on the mobile device.

daily keypair Used to encrypt the above-mentioned data secret on
the Guest’s mobile device before transferring it to the
Scanner Frontend via a QR code.

The public key is ob-
tained from the Luca
Server1. The private key
is known to all Health
Departments. (see Daily
Public Key Rotation for
further details).

venue keypair Establishes a second encryption layer for the contact
data reference that is already encrypted with the daily
keypair.

Public key is known
to the Luca Server and
downloaded by the Guest
App while checking in.
Private key is stored by
the Venue Owner.

12.3 Process

In this variation the Guest App conceptually assumes the role of the Scanner Frontend as described in the con-
vential Check-In process. The Guest App gains all required information from printed QR codes provided by the
Venue Owner.

Printed QR Code Generation

To facilitate this feature, the Venue Owner generates and provides QR codes that encode the following information:

• a valid scanner ID for their venue

• Optional: pre-defined additional data fields

Those QR codes are then printed and visibly placed at the venue for Guests to scan using the Guest App. For
instance, in a restaurant the Venue Owner might place a unique QR code on each table and note the table number
in the QR code’s additional data.

Check-In via the Guest App

To check-in, Guests scan the printed QR code using their Guest App. The Guest App can now use the scanner ID
encoded in the QR code to retrieve the venue keypair’s public key from the Luca Server.

The Guest App now proceeds just like for the conventional Check-In process. Most notably, it fetches and validates
the daily keypair? from the Luca Server, generates a valid trace ID using its tracing secret and a contact data
reference (encrypted for the daily keypair).

In the conventional Check-In process this data would now be encoded into a QR code and presented to a Scanner
Frontend to finish up the Check-In and upload it to the Luca Server. Instead, the Guest App re-encrypts the

1 The provided public key of the daily keypair is signed by a Health Department using their HDSKP. This signature is provided by the
Luca Server along with said public key.

32 Chapter 12. Check-In via a Printed QR Code

Security Concept

generated data for the venue keypair, associates it with the scanner ID and uploads the finalized Check-In to the
Luca Server itself.

The resulting Check-In is equivalent to a Check-In performed by the Scanner Frontend.

12.4 Security Considerations

Authenticity of the venue keypair

The printed QR code merely contains a scanner ID which is used to fetch the public key of the venue keypair from
the Luca Server. At the moment, there is no way for the Guest App to validate the authenticity of this public key.
A later version of the printed QR codes will contain the venue keypair’s public key directly.

Note, however, that the impact of a malicious public key is limited in this scenario as it only affects the outer layer
of the contact data reference’s encryption. The contact data reference is still encrypted for the daily keypair and
thus only accessible for the Health Department. Nevertheless, a theoretical collusion between the Luca Server
and the Health Department could still harm security objective O6.

Until the mentioned improvement is implemented, this risk is accepted.

Authenticity of Printed QR Codes

By nature, QR codes are easily forgable by simply copying them. Hence, an attacker might maliciously replace
QR codes of one venue with another one. This would lead to misguided Check-Ins by Guests and eventually
generate false information for Health Departments during contact tracing.

As the Luca system cannot appropriately protect itself from such attacks, it relies on the Venue Owner to make
sure that printed QR codes in their venue are not physically replaced by an attacker.

Direct Communication of Guest App and Luca Server

In contrast to the conventional Check-In process, the Guest App actively uploads its Check-In data to the Luca
Server. This might allow the association of user-specific meta-data (e.g. their IP address) and the Check-In’s trace
ID by the Luca Server (directly contradicting security objective O2). As mobile phone networks typically use
NAT, the fact that the Luca Server does not log any IP addresses and the request being unauthenticated, we do
accept this risk.

12.4. Security Considerations 33

Security Concept

34 Chapter 12. Check-In via a Printed QR Code

CHAPTER

THIRTEEN

GUEST CHECKOUT

For effective contact tracing the Health Departments must know in what time frame an Infected Guest was present
at any given location. Hence, Guests must check-out of locations when they leave.

13.1 Overview

Participants

• Guest

• Guest App

• Venue Owner

• Venue Owner Frontend

• Luca Server

Assets

• Check-In

Preconditions

• the Guest recently created a Check-In at some venue

Postconditions

• the Guest’s Check-In has a specific time period of stay

13.2 Secrets

This process requires no cryptographic secrets.

13.3 Checkout Process

Individual Check-Ins are identified by their trace ID that is generated during the Check-In process (via the Guest
App and a QR code scanner, scanning a printed QR code or a static badge and QR code scanner1).

For a checkout of some previous Check-In, the respective trace ID and the current timestamp are sent to the Luca
Server. No further authentication or validation is performed and the Check-In is annotated with the provided
timestamp.

The actual checkout might be performed in one of the following ways:

1 Currently, there is no way for a Guest that uses a Badge instead of the Guest App to perform a manual checkout. See also Inaccurate or
Tampered Checkout Times. luca might implement such feature in the future.

35

Security Concept

Manual App Check-out

After a Guest checked in using the Guest App they are presented with a “Check out” button for the currently
active Check-In. Upon user request the Guest App informs the Luca Server as described above and terminates the
Check-In. The Guest may now perform another Check-In at some other location.

Automatic Check-out via a Geofence around the Current Venue

For an automatic checkout the Venue Owner must provide their venue’s geo location and a “Check-In radius” (geo-
fence) in the Venue Information during initial venue registration. Once the Guest physically leaves the venue’s
radius, the mobile operating system will inform the Guest App which performs the checkout automatically.

Manual Venue Owner Check-out

Venue Owners can checkout all active Check-Ins for their venue via the Venue Owner Frontend. In that case, the
Venue Owner Frontend informs the Luca Server about the Venue Owner’s wish to end active Check-Ins at their
venue. For instance, restaurants might use this to end all remaining active Check-Ins after they close down for the
day.

Time-based Check-out after 24 hours

Regardless of the checkout mechanisms described above, any Check-In is automatically checked out after 24 hours
by the Luca Server.

13.4 Security Considerations

Inaccurate or Tampered Checkout Times

Checkouts must use the trace ID to reference their respective Check-In to the Luca Server. As the trace ID
is designed to be anonymous, luca cannot give any authenticity guarantees regarding the stored checkout time.
Any implementation trade-offs to extend luca’s guarantees for the checkout time would have had an influence on
security objectives O2 and O3.

It is worth noting that a Health Department usually does not blindly follow Luca’s data records when identifying
likely contact persons of an Infected Guest, but draws educated real-world conclusions from them. Therefore, any
checkout times are merely seen as a hint for real-world contact tracing activities by a Health Department.

Usage of Geo-Location Data by the Operating System

The above-described geo fence is implemented locally so the Guest’s location is never stored or sent to the Luca
Server. Additionally, the Guest must consent to the usage of location services by the Guest App to use this feature.
If they deny consent, they can still use luca but will need to always remember to checkout manually.

36 Chapter 13. Guest Checkout

CHAPTER

FOURTEEN

ADDITIONAL CHECK-IN DATA

luca provides the functionality to associate a Check-In with additional data. This can be done by either the Guest
App or by the Scanner Frontend. Additional data is designed to be non-sensitive data that can be used to narrow
down possible contact persons among all guests of a venue. For instance, this might be the table number a Guest
was placed at in a restaurant. Regardless of which app creates the Check-In, the additional data is encrypted using
the venue keypair before being uploaded.

37

Security Concept

38 Chapter 14. Additional Check-In Data

CHAPTER

FIFTEEN

GENERATION OF STATIC BADGES

A static Badge is a small key fob with a QR code printed on one side and a badge serial number on the flip side.
It provides an alternative to the smartphone based Check-In for less tech-savvy Guests. The QR code for Badges
are generated by a Trusted 3rd Party and manufactured in bulk by a print shop. Prior to the first Check-In Guests
must personalize their Badge with their Contact Data using the Badge Personalization Frontend.

This chapter describes how the Badges are generated. Subsequent chapters describe how they are personalized
and used for check-in.

15.1 Overview

Participants

• Trusted 3rd Party

• Luca Server

Components/Assets

• Badge

• Badge Generator

Preconditions

• the Luca Server is equipped with a badge keypair and a badge attestation keypair

• the Trusted 3rd Party is ready to use the Badge Generator

– possesses the required Luca API token1

– received the public key of a valid badge keypair

Postconditions

• one or more new Badges are generated and registered in the Luca Server

15.2 Secrets

The following secrets are involved in this process:

1 For specific tasks the Luca API requires special authentication via a so-called “Bearer token”. Further details about the authentication
mechanism of the Luca Server are beyond the scope of this chapter.

39

Security Concept

Secret Use / Purpose Location
badge serial num-
ber

A random seed to derive the Badge’s in-
trinsic secrets required to both encrypt
and associate Contact Data and perform
Check-Ins

Defined by the Badge Generator and
printed onto the flip side of the Badge. En-
tered into the Badge Personalization Fron-
tend to associate Contact Data to a Badge.

data secret, data
encryption key,
data authentication
key, tracing secret

Those secrets are required for the en-
cryption of Contact Data and performing
Check-Ins at luca locations. They are de-
rived from the before-mentioned badge se-
rial number.

Transiently known to the Badge Gen-
erator. Later re-derived by the Badge
Personalization Frontend for encrypt-
ing/associating Contact Data.

guest keypair Used to sign the encrypted contact data
reference on the badge and (during Badge
Personalization) to authenticate the owner
of the Badge. This keypair is the Badge-
equivalent of the guest keypair held by the
Guest App.

The private key is transiently known to the
Badge Generator as it is derived from the
badge serial number. Later it is re-derived
by the Badge Personalization Frontend for
authenticating the Contact Data. The pub-
lic key is stored on the Luca Server.

badge keypair Used to encrypt the contact data reference
while generating a Badge.

The public key is obtained from the Luca
Server2. The private key is known to all
Health Departments.

badge attestation
keypair

Used to sign freshly registered Badges for
later validation by the Scanner Frontend.

The private key is kept in the Luca Server
for a below-described remote attestation
workflow. The Scanner Frontend can ac-
cess the associated public key for valida-
tion.

15.3 Process

The Badge Generator software creates each Badge by randomly choosing a 56-bit serial number. All crypto-
graphic assets and the associated user ID for the generated Badge are then derived from this initial seed (aka. the
badge serial number). The newly generated Badge is then registered with the Luca Server via an authenticated
API request?. In response, the Luca Server creates a remote attestation signature for the badge using its badge
attestation keypair. Eventually, the relevant information is encoded into a QR code and printed on a plastic key
fob along with the initially generated serial number.

The Badge Generator runs the following algorithm to generate a Badge:

pseudocode

generate random bytes and use argon2id to derive initial keying material
entropy = random_bytes(7)
seed = argon2id(entropy, salt="da3ae5ecd280924e",

length=16, memorySize=32MiB, iterations=11, parallelism=1)

generate key material that should be available via the Badge's serial number only
level_one = HKDF-HMAC-SHA256(seed, length=64,

context="badge_crypto_assets",
salt="")

data_secret = level_one[0:16]
tracing_seed = level_one[16:32]
guest_keypair = level_one[32:64]

generate additional key material that needs to be available to a Scanner
→˓Frontend scanning the Badge
level_two = HKDF-HMAC-SHA256(tracing_seed, length=48,

(continues on next page)

2 The provided public key of the badge keypair is signed by a Health Department using their HDSKP. This signature is provided by the
Luca Server along with said public key.

40 Chapter 15. Generation of Static Badges

Security Concept

(continued from previous page)

context="badge_tracing_assets",
salt="")

user_id = toUuid4(level_two[0:16])
badge_verification_key = level_two[16:32]
tracing_secret = level_two[32:48]

encrypt a 'blanco' Contact Data Reference using the badge keypair's public key
iv = guest_keypair.public # public key bits truncated to 16 bytes
ephemeral_keys = newSecp256r1Keypair() # for DLIES with the badge keypair
→˓public key
dh_key = ECDH(ephemeral_keys.private, badge_keypair.public)
enc_key = HMAC-SHA256(data=dhKey, key=iv) # truncated to 16 bytes
enc_contact_data_ref = AES-128-CTR(user_id || data_secret, enc_key, iv)

sign the public Badge data with the guest_keypair
signature = sign(guest_keypair.private, user_id || enc_contact_data_ref)

register the Badge with the Luca Server and receive an
attestation of the new Badge using the Badge Attestation Key in response
attestation_signature = httpPOST("/api/v3/users/badge",

{
"userId": user_id,
"publicKey": guest_keypair.public,
"data": enc_contact_data_ref
"signature": signature

})

QR code and Serial Number Contents

The Badge’s QR code is then constructed by concatenating the following data:

• badge revision (currently 0x04)

• device type (0x02 for “Badge”)

• badge keypair ID (1 byte identifier of the badge keypair used to encrypt the contact data reference)

• tracing_seed

• enc_contact_data_ref

• attestation_signature (in IEEE 1363 format)

• badge_ephemeral_public_key (ephemeral_keys.public from above)

• checksum (SHA-256 of all the previous data truncated to 4 bytes)

The created data buffer is then encoded using the Z85 encoding and printed onto a plastic key fob in the form of
a QR code. Along with the QR code each Badge features its associated badge serial number that is the random
entropy value encoded in base32crockford and split into four digit groups (e.g. LUCA-1337-COOL).

15.3. Process 41

https://rfc.zeromq.org/spec/32/
https://www.crockford.com/base32.html

Security Concept

Rationale of Generated and Exposed Secrets

The Badge secret derivation is split into three steps:

1. Hardening against brute force attacks on the short 56-bit serial number. Ensured by employing the pass-
word hash algorithm argon2id. See the security considerations for a discussion on the chosen tuning
parameters.

2. Derivation of ‘secret’ values that only the owner of the Badge should have access to. The derive those
values one needs to know the badge serial number with the exception of the tracing_seed which is
exposed in plain in the Badge’s QR code. Secret values are required to personalize the Badge or perform
contact tracing with it.

3. Derivation of ‘public’ values that are exposed in the QR code. These values are revealed in the QR code
and allow the Scanner Frontend to perform a Check-In in the name of the Badge’s owner.

All public values revealed on the printed key fob are discussed below.

“badge revision” and “device type”

Those are technical values needed by the Scanner Frontend to distinguish a Badge from a Guest App (device type)
and allow for schema updates (badge revision) of the described Badge process.

badge serial number

The Badge’s owner can use the badge serial number printed on their key fob for two things:

1. Personalize the Badge by associating their Contact Data with the Badge. For further details see Badge
Personalization.

2. Facilitate a contact tracing by revealing the Badge’s serial number to the Health Department

In both cases, either the Badge Personalization Frontend or the Health Department Frontend will re-derive all
necessary secrets from the badge serial number for the desired use case.

badge keypair ID and attestation_signature

The badge keypair ID identifies the badge keypair that the Luca Server used to sign the badge data during
the registration. Using the public key of the matching badge keypair the Scanner Frontend can check the
attestation_signature of the scanned Badge and determine whether it is valid or not. See the badge
Check-In process for further details.

tracing_seed and Encrypted contact data reference (enc_contact_data_ref)

Using the tracing_seed the Scanner Frontend can derive the badge owner’s user ID and tracing secret. With
this information, the Scanner Frontend is able to create a valid Check-In for the Badge’s owner. See the badge
Check-In process for further details.

42 Chapter 15. Generation of Static Badges

Security Concept

15.4 Security Considerations

Choice of argon2id Parameters

The parameters for the argon2id key derivation function are optimized to maximally slow down a brute-force
attack, while not prohibitively inconveniencing users of low-end commodity hardware in the Badge Personaliza-
tion flow. The specific parameters (memorySize: 32MiB, iterations: 11, parallelism: 1) yield an
execution time of around 0.5 seconds using a native implementation of the on high-end consumer hardware and
around 2 to 5 seconds using a browser-based JavaScript/WebAssembly implementation on a mid-range to low-end
mobile device.

A random but fixed salt is used. This is not a problem, as argon2id is not used for password hashing here but
for key derivation from random input data (termed entropy above).

15.4. Security Considerations 43

Security Concept

44 Chapter 15. Generation of Static Badges

CHAPTER

SIXTEEN

BADGE PERSONALIZATION

After the Badge has been created as described above, it contains an encrypted contact data reference
(enc_contact_data_ref). This reference is conceptually very similar to the contact data reference used
by the Guest App. However, at this point there is no contact data associated to the reference, yet. Guests need to
personalize their Badge using the Badge Personalization Frontend.

16.1 Overview

Participants

• Guest

• Luca Server

Components/Assets

• Badge

• Contact Data

Preconditions

• there is a Guest that is willing to use a Badge for Check-Ins

• the Guest has received their Badge

• the Badges was generated as described in Generation of Static Badges

Postconditions

• some Guest has personalized their Badge with their Contact Data via the Badge Personalization Frontend

16.2 Process

The Badge Personalization Frontend requires the badge serial number and the Guest’s Contact Data. It creates
the encrypted guest data as follows:

pseudocode

derive the initial keying material from the serial number
seed = argon2id(entropy, salt="da3ae5ecd280924e",

length=16, memorySize=32MiB, iterations=11, parallelism=1)

derive secrets analogously to the Badge Generation process
level_one = HKDF-HMAC-SHA256(seed, length=64,

context="badge_crypto_assets",
salt="")

data_secret = level_one[0:16]
tracing_seed = level_one[16:32]

(continues on next page)

45

Security Concept

(continued from previous page)

guest_keypair = level_one[32:64]

level_two = HKDF-HMAC-SHA256(tracing_seed, length=48,
context="badge_tracing_assets",
salt="")

user_id = toUuid4(level_two[0:16])
badge_verification_key = level_two[16:32]
tracing_secret is not required in this process

derive the symmetric encryption key from the data secret
this key directly corresponds to the data_encryption_key used by the Guest App
data_encryption_key = SHA256(data secret || 0x01) # truncated to 16 bytes

encrypt contact_data and badge_verification_key analogously to how the Guest
App creates the encrypted_guest_data
the badge_verification_key corresponds to the data_authentication_key

iv = random_bytes(16)

encrypted_guest_data = AES_128(contact_data + badge_verification_key,
key=data_encryption_key,
mode=CTR,
iv=iv)

badge_data_mac = HMAC(encrypted_guest_data,
key=badge_verification_key)

badge_data_signature = guest_keypair.private.sign(encrypted_guest_data +
badge_verification_key +
iv)

The Badge Personalization Frontend sends the following data to the Luca Server:

• the encrypted guest data

• the IV used in the encryption

• the badge data mac

• the badge data signature

The Luca Server verifies that the request is authorized by checking the provided signature with public key that
was uploaded when the Badge was generated.

46 Chapter 16. Badge Personalization

CHAPTER

SEVENTEEN

BADGE CHECK-IN

In order to check-in with a Static Badge the Guest presents the Badge’s QR code to the Scanner Frontend, the
same way they would if they were using the Guest App. However, as the static QR code on the Badge cannot
dynamically create trace IDs, the Scanner Frontend has to assume some of the tasks normally done by the Guest
App.

The Scanner Frontend reads following information from the QR code

• enc_contact_data_ref

• badge_keypair_ID

• tracing_seed

• badge_ephemeral_public_key

• attestation_signature

and uses it to create a Check-In as follows:

pseudocode

the tracing_seed was transmitted via the scanned QR code
level_two = HKDF-HMAC-SHA256(tracing_seed, length=48,

context="badge_tracing_assets",
salt="")

user_id = toUuid4(level_two[0:16])
badge_verification_key = level_two[16:32]
tracing_secret = level_two[32:48]

the data created below corresponds directly to the data in the QR code displayed
→˓by the Guest App
timestamp = UNIX timestamp rounded down to the last full minute (little
→˓endian encoding)
trace_id = HMAC-SHA256(user_id || timestamp, tracing_secret) # truncated
→˓to 16 bytes

enc_data = enc_contact_data_ref # printed on the QR code
verification_tag = HMAC-SHA256(timestamp || enc_data, badge_verification_key)

The rest of the check-in procedure is equivalent to the Check-In via the Mobile Scanner App.

47

Security Concept

17.1 Security Considerations

A Static Badge cannot provide the same security guarantees as the Guest App. During check-in, the Scanner
Frontend learns the Badge’s tracing secret and performs tasks that would normally be done by the Guest App.

As the QR code printed on the Badge is immutable and is the only asset required in order to check-in using the
Static Badge, the Scanner Frontend now possesses all knowledge required to perform a check-in in the name of
the Guest. Obviously, it also allows the Scanner Frontend to recognize Badges it had previously scanned.

48 Chapter 17. Badge Check-In

CHAPTER

EIGHTEEN

TRACING THE CHECK-IN HISTORY OF AN INFECTED GUEST

The goal of this process is to identify Guests that are at a risk of being infected, as a result of having been in
contact with an Infected Guest. The process consists of two major parts: Tracing the Check-In History of an
Infected Guest and Finding Potential Contact Persons. This chapter describes the first part.

18.1 Overview

Participants

• Infected Guest

• Guest App

• Health Department

• Health Department Frontend

• Luca Server

Assets

• Contact Data

• Check-In

• Check-In History

Preconditions

• the Infected Guest is registered

• the Infected Guest has created at least one Check-In (see Check-In via Mobile Phone App)1

• the Infected Guest’s Guest App has retrieved and validated the public key of the current daily keypair

• the Health Department is onboarded to the Luca system and has access to the daily keypairs (see Daily
Keypair Rotation)

• the Health Department is in contact with an Infected Guest

Postconditions

• the Health Department has access to the Check-In History of the Infected Guest

1 The process can also be trivially performed if the Guest has not created any Check-Ins but the Check-In History will be empty.

49

Security Concept

18.2 Secrets

The following secrets are involved in this process:

Secret Use / Purpose Location
tracing secrets Given the consent of the Infected Guest the rele-

vant tracing secrets are made available to the Health
Department and the Luca Server to reconstruct the
Check-In History.

• Guest App
• Health Depart-

ment Frontend
• Luca Server

data secret During the process, the Health Department Frontend
fetches the Infected Guest’s encrypted guest data, de-
crypts it using the data secret, and displays it.

• Guest App
• Health Depart-

ment Frontend

daily keypair The Guest App encrypts the guest data transfer object
with the public key. The Health Department uses the
private key for decryption of the same.

• Health Depart-
ment Frontend

• Guest App (public
key only)

tracing TAN The TAN is created on the Luca Server as an identi-
fier for the encrypted guest data transfer object by re-
quest of the Guest App, which displays it to the Guest.
The Guest then communicates it to the Health Depart-
ment.

• Luca Server
• Guest App
• Health Depart-

ment Frontend

18.3 Process

<IPython.core.display.SVG object>

The first part of the contact tracing is for the Health Department to reconstruct the Check-In History of the Infected
Guest. Each Check-In stored in luca is associated with an unique trace ID. These IDs are derived from the tracing
secret stored in the Guest App (as well as from the Guest’s user ID and a timestamp). Hence, given the Infected
Guest’s tracing secrets the Health Department can reconstruct the Infected Guest’s trace IDs and find all relevant
Check-Ins.

Accessing the Infected Guest’s Tracing Secrets

In the first step the Health Department needs to acquire the Infected Guest’s tracing secrets for the epidemiolog-
ically relevant timespan. Each tracing secret will allow the Health Department to find all Check-Ins whose trace
ID is based on this secret.

In the beginning of the process, an Infected Guest is directly contacted by a local Health Department. In order
to retrieve the Guest’s tracing secrets the Health Department asks the Guest to reveal their Contact Data and
Check-In History via a functionality in the Guest App.

When this functionality is activated, the App creates a guest data transfer object that holds all information required
for the Health Department’s tracing process:

Asset Use
tracing secrets Needed to reconstruct the Guest’s trace IDs
user ID Needed to reconstruct the Guest’s trace IDs
data secret Used to validate and display the Infected Guest’s identity in the Health Department Frontend

50 Chapter 18. Tracing the Check-In History of an Infected Guest

Security Concept

The data is encrypted using the current daily keypair’s public key2 and uploaded to the Luca Server. The Luca
Server returns a tracing TAN, which is a short alpha-numeric identifier for the guest data transfer object on the
Luca Server and does not carry any further security relevance.

The Infected Guest can now pick up their communication with the Health Department and spell out the tracing
TAN. This allows the Health Department to retrieve the encrypted guest data transfer object from the Luca Server.
The transfer object is decrypted using the daily keypair’s private key. Usage of the daily keypair within the Health
Department is detailed in Chapter Daily Keypair Rotation.

After a short timespan of a few hours the encrypted guest data transfer objects are deleted from the Luca Server.

Reconstructing the Infected Guest’s Check-In History

The second step is for the Health Department to find all venues where the Infected Guest has created Check-Ins
within the recent, epidemiologically relevant timespan (e.g. 14 days).

To start the tracing process, the Health Department sends the Infected Guest’s tracing secrets to the Luca Server.
Based on the secrets and the affected user ID, the Luca Server generates all possible trace IDs for the relevant
time frame. Given these trace IDs luca can find all Check-Ins created by that Guest during that time frame—the
Infected Guest’s Check-In History.

The Luca Server can use the recovered Check-In History to contact all venues the Infected Guest has visited. The
process of contacting Venue Owners for lifting the outer layer of encryption in each affected Check-In is described
in the next part.

18.4 Security Considerations

Correlation of Guest Data Transfer Objects and Encrypted Guest Data

After receiving a Infected Guest’s guest data transfer object the Health Department Frontend uses the contained
user ID to obtain that Guest’s encrypted guest data from the Luca Server. This is done in order to display the
Infected Guest’s Contact Data to the Health Department.

The Luca Server can (indirectly) use this circumstance in order to associate a guest data transfer object with the
encrypted guest data of the same Guest by observing the Health Department Frontend’s requests.

Accidental Upload of Guest Data Transfer Object

Guests could trigger the Guest App’s functionality to upload the guest data transfer object and request a TAN
accidentally or out of curiosity. This would needlessly upload their encrypted secrets, but they still would not be
accessible to the Luca Server (as they are encrypted for the daily keypair) nor the Health Department (as they do
not know the TAN).

We believe this risk is acceptable and can further be mitigated by an informative warning message in the Guest
App when activating the functionality.

2 Whenever making use of the daily keypair the Guest App verifies the key’s validity and authenticity as described in Daily Keypair
Rotation.

18.4. Security Considerations 51

Security Concept

52 Chapter 18. Tracing the Check-In History of an Infected Guest

CHAPTER

NINETEEN

FINDING POTENTIAL CONTACT PERSONS

19.1 Overview

Participants

• Traced Guests

• Luca Server

• Health Department

• Health Department Frontend

• Venue Owner

• Venue Owner Frontend

Assets

• Contact Data

• Check-In

• Check-In History (acquired in the previous part)

Preconditions

• the Health Department has the Check-In History of the Infected Guest

Postconditions

• the Health Department has access to the Contact Data of all Traced Guests

19.2 Secrets

The following secrets are involved in this process:

53

Security Concept

Secret Use / Purpose Location
data secret The data secrets of all Traced Guests are made acces-

sible to the Health Department in the process in order
to decrypt the encrypted guest data.

• doubly encrypted
in each Check-In

• encrypted with the
daily keypair, then
decrypted, in the
Health Depart-
ment Frontend

venue keypair The keypair’s private key is used in the Venue Owner
Frontend to decrypt the outer layer of encryption on
the contact data reference and the Additional Data in
each Traced Guest’s Check-In.

• Venue Owner
Frontend

daily keypair The keypair’s private key is used in the Health De-
partment Frontend to decrypt the inner layer of en-
cryption on the contact data reference in each Traced
Guest’s Check-In.

• Health Depart-
ment Frontend

19.3 Process

<IPython.core.display.SVG object>

Given the Infected Guest’s Check-In History (obtained in part 1 above the Luca Server determines all Venue
Owners whose venues have been visited by this Guest. Each of them is contacted using the Venue Information
provided during Venue Registration and asked to reveal the encrypted contact data references of potential contact
persons (Traced Guests).

When a Venue Owner has been contacted to assist in contact tracing they use the respective functionality in the
Venue Owner Frontend. The Venue Owner Frontend proceeds to download all Check-Ins registered for this venue
that coincide with the visit of the Infected Guest from the Luca Server. For each of these Check-Ins both the outer
encryption layer on the contact data reference and the Additional Data are decrypted using the private key of this
venue’s venue keypair. Note that, after the decryption, the contact data reference is still encrypted with they daily
keypair and thus only accessible to the Health Department (see Check-In via Mobile Phone App).

The data is uploaded back to the Luca Server in order to be shared with the Health Department that initiated the
tracing.

After decrypting the contact data references the Health Department possesses each Traced Guest’s user ID and
data secret. It fetches the Guests’ encrypted guest data from the Luca Server using the user ID and decrypts it
using the data encryption key (derived from the data secret) to obtain the Contact Data and the data authentication
key. The latter is used to verify the authenticity of both the Check-In and the contact data reference. The Contact
Data can now be used to contact the Traced Guest and inform them that they are at risk of being infected.

19.4 Security Considerations

Authentication of Contact Data and Check-Ins

The data authentication key is used to authenticate both the contact data reference in the Check-In (using the
verification tag) and the Contact Data. However, the data authentication key has to be retrieved by deriving the
data secret contained in the contact data reference.

This is unusual (cf. Encrypt-then-MAC), but we consider it sound. Please refer to the Security Considerations
regarding Guest Check-In for further details.

54 Chapter 19. Finding Potential Contact Persons

Security Concept

Possible Abuse of Traced Guests’ Data Secrets

In the process described above the Health Department obtains each Traced Guest’s data secret and derives the
symmetric data authentication key from it. It uses this key to validate the authenticity of the Check-Ins, verifying
that the Check-Ins it received from the Luca Server have in fact been created by the owner of the data secret (the
Traced Guest).

However, having learned the data secret, the Health Department can now itself create apparently valid Check-
Ins for that Traced Guest. Neither the Luca Server nor another Health Department can distinguish these forged
Check-Ins from authentic ones.

Note that the Health Department does not know Traced Guests’ tracing secrets here. Hence, the forged Check-Ins
would not appear in the Guest’s Check-In History. They would, however, appear whenever the forged Check-In
coincides in time and place with another Traced Guest’s Check-In.

19.4. Security Considerations 55

Security Concept

56 Chapter 19. Finding Potential Contact Persons

CHAPTER

TWENTY

CRYPTOGRAPHIC ALGORITHMS

This chapter privides details about the cryptographic algorithms used throughout luca. All primitives have been
selected in accordance with the Technical Guideline TR-02102-1 of the German BSI1.

20.1 Symmetric Encryption

In a future version of luca we plan on using AES-128 in Galois/Counter Mode (GCM) instead.

luca uses AES with a key length of 128 bits in Counter Mode (AES-128-CTR) for symmetric encryption. Data
is authenticated using HMAC-SHA256.

20.2 Asymmetric Cryptography

luca uses elliptic curves for the required asymmetric cryptography.

Encryption

Asymmetric encryption in luca is based on the DLIES encryption scheme as specified in section 3.5 of BSI TR-
02102-1?. For the components required, luca uses the following primitives:

Component Algorithm
asymmetric key parameters secp256r1 (NIST P-256)
symmetric encryption AES-128-CTR
message authentication code HMAC-SHA256
key derivation function SHA256

1 BSI TR-02102-1. Cryptographic Mechanisms: Recommendations and Key Lengths, accessed 2021/03/04

57

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=1

Security Concept

Signing

We use ECDSA with the secp256r1 (NIST P-256) elliptic curve.

On the Use of secp256r1

The curve secp256r1 is recommended by NIST2 for use with Discrete Logarithm-Based Cryptography. It
is, however, criticized for using unexplained inputs in the curve-generation process and hence rumored to be
backdoored by the NSA3. At the time of writing, those rumors can neither be proven nor disproven. Consequently
it would be preferable to use a different curve that is generally considered safe.

However, as of 2021, secp256r1 is the only curve widely supported by many mobile phone hardware-based
key managers45. We chose to use secp256r1 because we value the security benefit of using the trusted module
higher than the risks laid out above.

20.3 Encryption Scheme

Based on the scheme specified above, asymmetric encryption is implemented by the components in luca as fol-
lows:

pseudocode

given the inputs:
* data: the data to encrypt
* receiver_public_key: the public key of the receiver
* iv (optional): the initialization vector

ephemeral_keys = a new secp256r1 key pair (for DLIES with the receiver's
→˓public key)
iv = random_bytes(16) # Note: in some contexts an external input
→˓(usually

an ephemeral public key) is used as
→˓IV
dh_key = ECDH(ephemeral_keys.private, receiver_public_key)
encryption_key = SHA256(dh_key || 0x01) # truncated to 16 bytes
authentication_key = SHA256(dh_key || 0x02)
encrypted_data = AES-128-CTR(data, encryption_key, iv)
mac = HMAC-SHA256(encrypted_data, authentication_key)

The function’s output includes encrypted_data, mac, iv and ephemeral_keys.public.

On the Use of the ephemeral public key as IV

As indicated in the pseudocode snippet above, we sometimes re-use the DLIES ephemeral key pair’s public key
as the initialization vector for AES-CTR.

Our motivation for this is the limited capacity of the Check-In QR codes generated by the Guest App. The receiver
of the encrypted data needs both, the ephemeral public key and the IV, to decrypt the data. Re-using the public
key as IV saves space.

This construction is uncommon, but secure. AES-CTR only requires the initialization vector to be unique, which
is satisfied here.

2 NIST SP 800-186 (Draft). Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters accessed
2021/03/04

3 Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography., accessed 2021/03/04
4 Apple Developer documentation on SecureEnclave, accessed 2021/03/04
5 Android Developer documentation on HSM, accessed 2021/03/08

58 Chapter 20. Cryptographic Algorithms

https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://safecurves.cr.yp.to
https://developer.apple.com/documentation/cryptokit/secureenclave
https://developer.android.com/training/articles/keystore#HardwareSecurityModule

Security Concept

Decryption

Accordingly, decryption and authentication is implemented as follows:

pseudocode

given the inputs:
* encrypted_data: the data to decrypt
* receiver_private_key: the private key of the receiver
* iv: the initialization vector
* ephemeral_public_key: the sender's public key for DLIES (ephemeral_keys.public)
* mac: the message authentication code

dh_key = ECDH(receiver_private_key, ephemeral_public_key)
encryption_key = SHA256(dh_key || 0x01) # truncated to 16 bytes
authentication_key = SHA256(dh_key || 0x02)

verify_mac(mac, HMAC-SHA256(encryptedData, authentication_key))
decrypted_data = AES-128-CTR(data, encryption_key, iv)

If the provided mac is valid, the function returns the decrypted_data.

20.3. Encryption Scheme 59

Security Concept

60 Chapter 20. Cryptographic Algorithms

CHAPTER

TWENTYONE

PLANNED IMPROVEMENTS

luca is under continuous development. This appendix collects improvements we are currently working on.

21.1 Certification of Health Department Keypairs

The two keypairs of each Health Department, the Health Department Signing Keypair HDSKP and the Health
Department Encryption Keypair HDEKP, play a crucial role in the luca system. As described in the chapter Daily
Keypair Rotation the HDSKP is used to sign the daily keypair. This signature is verified by the Guest App during
check-in. The HDEKP also plays an important role in the process of Daily Public Key Rotation: the new daily
keypair is made accessible to all Health Department’s HDEKPs registered in luca. Consequently, the authenticity
of these two keypairs is of great importance.

During the pilot phase luca did not rely on a third party PKI to ensure the authenticity of those public keys.
Hence, Guest Apps and Health Departments currently need to rely on the Luca Server and Luca Service Operator
to ensure the authenticity of the keypairs.

With the country-wide rollout of luca the HDSKP and HDEKP public keys will be signed by certificates issued by
Bundesdruckerei’s subsidiary company D-Trust GmbH. Those certificates will be based on one of D-Trust’s global
root certificates, provide revocation mechanisms and will be issued only after manual validation of the requesting
Health Department’s identity. Both the Guest App and the Health Departments will then rely on a chain of trust
to ensure the authenticity of HDSKP and HDEKP.

We will update this document accordingly.

61

https://d-trust.net

Security Concept

62 Chapter 21. Planned Improvements

CHAPTER

TWENTYTWO

CONTACT LUCA

22.1 GitHub

Feel free to start and contribute to discussions on the “Discussions” page on GitHub.

22.2 Security Related Issues

If you find any security issues, please get in contact via security@luca-app.de and encrypt your message with the
following PGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGBFyPUBEAC6f5tGTsDEfCpCAcufybw4GgB3+UoJKubFe8QOxXo8RiMvnjMO
gdQtYj4TTFpe8xvXCkAZgXzRXNn+ylF7PtM4OSIi5V+PIUfmJkR+9uQMK2FgJ6+p
zGQbem80nsGlGcLfXQGLbEvzMGBc6zcyXB3iAyIMIju4BoW5XykMO13pITorww4S
6tAz6X0oUZFwUDBAXB35fqPBVdk2D4ZZMZiPX45KFvg3gBRO66PxYG595z2RzhRj
/rY5ojN8AqACCy0aNzcTj64hdzXRSxfgeUOt9Ve59R54oVM14RM0M1w6ub8Y7uOd
couh+RAqTVs1qW8naF8ioHI3BxYRKCV93FqWvF1foOt9aNTlCo9YZWyPocd2luUm
n8nUfi7rfP4iMEKpGTa6oJ88QhrSzKtODosmo1waqNCnF3axZLvqVJ/rFy4CZAnz
0b0C4T4Q11I6vDEv7B7GKNeq/39JPREaucarjCsnyVdJM/0Whtw1bd+0sy13HFU4
X+QxcSleT/tFGvA9uw/WTfwhE+RqSaHk7YI1zO+VpPmzyQSmMUhs1pPdiQaalOIm
PzsDZIA9ifpgDR5pXbgAMKMOw6qE8UeSSyfchZSSqvxFBCTEKwSRo2ceJRdqKm9O
cBnNWDNB7ZhWJvdxT5wI4kHt3J0VcftddejFBNdCPZDEz/EFNe0EpJuJwwARAQAB
tChjdWx0dXJlNGxpZmUgR21iSCA8c2VjdXJpdHlAbHVjYS1hcHAuZGU+iQJUBBMB
CAA+FiEESCS9XGyNJ1YasIy1Ax3WxGr9CEsFAmBFyPUCGwMFCQPCZwAFCwkIBwIG
FQoJCAsCBBYCAwECHgECF4AACgkQAx3WxGr9CEv0Fg//SydWxFcN5mmVGRfwro4J
sv8imYfFpTcqTlejSTBmH/MZJwy5qU8N4W3EnvDGfEElBLYFMbmFX3gEx6Yaz28w
4BlWGEdzhMyQMTWjoRsIl/EdpyLrP8rtVXxXRLWhzGLu3x917+wQMOGrgVHYYeld
3UaSs3ioPOBZGcFT/Y2ow5alUJs7iZe+aaCIrETJkjwltQWTnOzPGGxdNHsGjZKM
+6Mg7mSpso64JyZTAWxGqyXZ645IYlIjzBDVjpkPZatooabcUZ/5KvVbbUm70W8W
DmzX170YbiwPc6eQKDB9cZJsXUjmSHaBC4NzVzFOXeELyFkn3okNwmIvfXDmKhQy
Pb6H+8dflQ1orsE7cjP5JdisPLz3LmTDq1tt/To9bQ8yntpcH+naZFvSC8rs+ruj
xw6t1lKI2L44OJ9uoOfKXxp50XYuNRwy7W+vY6EOgQwMwGZnazR6DplcHPjKfq+o
catTtRbrY/a3PjX0cKJslbaDRPa5IoTHnMskfZPKF8ckSa1SdVG1xuDQ/oD2VMAI
6+/k9mZOVt27Re4NArCkwmVwqCA6PGBdMHoL4fl0jUJx3YT3WyeawIwXgG2eTHSo
jTyjwiL4iSEJBdMD4oo+cs87EdCaeClGb1CAj5YQYNVUSyyUSV2pJz7IVllqpEU8
aPyT3cGK6XdFrNnJuu62d0e5Ag0EYEXI9QEQANdu7jnaUhogRE31xd7af1uGS6Pl
nCMpnKlWmiDuwFMF06P2eHXOdilNw5/fbYPomSaa639irg6ZZ2ayCU2fivhN7ohB
g4OAv36LVOqgtBBafuQL/1k9i8cNMpK2yrGMzh+Gwt3eZKMkMSh3YkRAVUzlzDNV
4KIwDqWQ0QsECn45yaQ4wHINpbFynZAoQ9GVYz8E3tAX76rEKyAV/tX77eRMwfbG
bYFmHXZRIk8k/4FG00ns1U943in4YWzWaKv8i4+Ip3vxa/wGf7gvD0DIx7ZHELDW
+JZsfvWLsbcoqX4aMNaXiWPi1wqV2WXnJfXQf4ReOpAx1eTmYtPN/DeLXdAFsMBx
B9O9vTo5ATpt/JMwZ6FIluQ99OMssYCb6IePQPbdgClNEEDEcehGynTOL8VHh9lA
YhFNBSGN4PxUSyvnx75d44D1GSGyD+3GjfOqiE2GvBIXQODV1gLTXivySm7wXKE0
MfffcnZOg9scWIreZ1tVjaYJ7ywv80nGK3L9/C0j83kzKJXx+neXD8k3Bx3w1pz0
GqDYVcRBmd5CdchgqnGgjQJ7tDDjGGDxOhdONqWRBHkGSU/SsgroZVtTzLQm25is

(continues on next page)

63

https://github.com/lucaapp/security-concept/discussions
mailto:security@luca-app.de

Security Concept

(continued from previous page)

bPdocGnrsq4RPr1abwYZgX0Dh6SuuNWDf209qDjVQJuoh0IMiprIXKNdrS7tYmxm
kknkPYFcUlLbESlFABEBAAGJAjwEGAEIACYWIQRIJL1cbI0nVhqwjLUDHdbEav0I
SwUCYEXI9QIbDAUJA8JnAAAKCRADHdbEav0IS0zqD/91KnBmJd/cfdLPnYREtfr6
tDFMSUy04OqeeyMnRiYRyr/TQnEEM/TkJfgia7LOkSY8ePxtwd9HsM7l/dsQgwP1
EABzqP7DySrqlGQlIzXd390V1A0UzSKlB2+5NGYNv8D5xtP53gvTmb2gB2V5DZD+
8E3pF+XQl9VNEUkyGcTFLLFuWWyqb8kpiGKpZKRMqIIdHbUEnseSErblVHXvnN0p
BQh4FZbFyJn+NVz6OYewZ8ytI4YqxkC9aEIjMxhCyYXFF0kWjQNx0S99fWvgdG+/
RTlv+r/G5g54S++0xLE1/5aiBsKlZEhOrN5o670h6cwefYtW+NvgEOWbT/i0maeK
3UUqYwEWztWyKA0Q+ENocQNkzThN+L6Il7YuAH0qGgqJ0sjnmmg7+gg7CqAnyO1s
loVkYWOaqXgoS0oO6gmlLAF1jDUVLgSXDAKGHyOQfE5XUjHZwruYVtH0Klo2sUQJ
xWP+YhliFj0rIXyfueT7TFVJTqxagK9RmRoKWtxzFmqbfJXIu7C7OU9EjnR3tt6u
k1bhDIgOgx4TjkNnNfH8FEGVYD7Mb1pMTcPUpS233ik87QY2/8Qod2FLpwwCtpy8
o+h/0l3DB0zmZNU8Ci0zD/PPa0ivfuoxtuUybfNaHXj+3rG9yvtO1ZZbweoaEdSL
HTmQN7E9lsxEBmyIOYoCUA==
=J3BG
-----END PGP PUBLIC KEY BLOCK-----

64 Chapter 22. Contact luca

INDEX

B
Badge, 6
badge attestation keypair, 11
Badge Generator, 6
badge keypair, 11
Badge Personalization Frontend, 6
badge serial number, 12

C
Check-In, 7
Check-In History, 7
Contact Data, 7
contact data reference, 12

D
daily keypair, 11
daily keypair ID, 12
data authentication key, 11
data encryption key, 11
data secret, 11

E
Email Service Provider, 6
encrypted guest data, 12

G
Guest, 5
Guest App, 5
guest data transfer object, 12
guest keypair, 11

H
HDEKP, 11
HDSKP, 11
Health Department, 5
Health Department Certificate, 11
Health Department Frontend, 5
Health Department Information, 7

I
Infected Guest, 5

L
Luca Server, 5
Luca Service Operator, 5

S
Scanner Frontend, 6
scanner ID, 12
Scanner Information, 8
Scanner Operator, 5
SMS Service Provider, 6

T
trace ID, 12
Traced Guest, 5
tracing secret, 11
tracing TAN, 12
Trusted 3rd Party, 5

U
Uninfected Guest, 5
user ID, 12

V
venue ID, 12
Venue Information, 7
venue keypair, 12
Venue Owner, 5
Venue Owner Frontend, 5
verification tag, 12
verification TAN, 12

W
Web-Check-In Frontend, 6

65

	Introduction
	About this Document
	Contributors
	Guarantees Provided by luca
	Overview

	Actors and Components
	Actors
	Components

	Assets
	Security Objectives
	List of Objectives

	Secrets and Identifiers
	System-wide List of Secrets
	Glossary

	Overview of Processes
	Venue Registration
	Overview
	Secrets
	Process
	Security Considerations

	Health Department Registration
	Overview
	Secrets
	Process

	Daily Keypair Rotation
	Overview
	Secrets
	Daily Public Key Rotation

	Guest Registration
	Overview
	Secrets
	Process

	Check-In via Mobile Phone App
	Overview
	Secrets
	Process

	Check-In via a Printed QR Code
	Overview
	Secrets
	Process
	Security Considerations

	Guest Checkout
	Overview
	Secrets
	Checkout Process
	Security Considerations

	Additional Check-In Data
	Generation of Static Badges
	Overview
	Secrets
	Process
	Security Considerations

	Badge Personalization
	Overview
	Process

	Badge Check-In
	Security Considerations

	Tracing the Check-In History of an Infected Guest
	Overview
	Secrets
	Process
	Security Considerations

	Finding Potential Contact Persons
	Overview
	Secrets
	Process
	Security Considerations

	Cryptographic Algorithms
	Symmetric Encryption
	Asymmetric Cryptography
	Encryption Scheme

	Planned Improvements
	Certification of Health Department Keypairs

	Contact luca
	GitHub
	Security Related Issues

	Index

